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FINDING LARGE SELMER GROUPS

Barry Mazur & Karl Rubin

Abstract

In this paper, we show how to use a recent theorem of Nekovár̆
[12] to produce families of examples of elliptic curves over number
fields whose p-power Selmer groups grow systematically in Zd

p-
extensions. We give a somewhat different exposition and proof of
Nekovár̆’s theorem, and we show in many cases how to replace the
fundamental requirement that the elliptic curve has odd p-Selmer
rank by a root number calculation.

1. Introduction

Raoul Bott has inspired many of us by the magnificence of his ideas,
by the way he approaches and explains mathematics, and by his warmth,
friendship, and humor. In celebration of Raoul’s eightieth birthday, we
offer this brief article in which we will give an exposition of a theorem
of Jan Nekovár̆. We will explain how the recent cohomological ideas
of Nekovár̆ [12] imply (under mild hypotheses plus the Shafarevich–
Tate conjecture) systematic growth of the ranks of the group of rational
points on certain elliptic curves as one ascends the finite layers of ap-
propriate towers of number fields.

Let K/k be a quadratic extension of number fields, and denote by σ
the non-trivial automorphism of K/k. Let p be an odd prime number.

By a Zp-power extension of K, we mean an abelian extension L/K

with Galois group Zdp for some d. If L/K is a Zp-power extension and
L/k is Galois, then σ acts on Gal(L/K) and we will say that L/K is
k-positive (resp. k-negative) if σ acts trivially (resp. by the scalar −1)
on Gal(L/K). Thus L/k is abelian if L/K is k-positive, and Gal(L/k)
is a generalized dihedral group if L/K is k-negative.

For any such K/k, there is a maximal k-positive Zp-power extension
K +, and a maximal k-negative one K −. The extension K +/K is always
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non-trivial because K + contains the cyclotomic Zp-extension of K. The
extension K −/K is non-trivial if K is not totally real (see Lemma 3.2).

If E is an elliptic curve defined over K and L is a (possibly infinite)
extension of K, say that E has Mordell–Weil growth relative to L/K
if for every finite extension F of K in L, the rank of the Mordell–Weil
group E(F ) is at least [F : K]. In particular, if [L : K] is infinite, this
property will imply that the Mordell–Weil rank of E over L is infinite.
Say that E has p-Selmer growth relative to L/K if the pro-p-Selmer
rank of E over F is at least [F : K] for all finite extensions F of K in
L.

Recent work of Nekovár̆ ([12], especially Section 10.7; note that this
is unpublished, but available on the indicated website) shows that under
extremely mild hypotheses, if E is an elliptic curve over k that has odd
pro-p-Selmer rank over K and that is of good ordinary reduction at the
primes above p, then E has p-Selmer growth relative to K −/K. Assum-
ing the Shafarevich–Tate conjecture, this is equivalent to the statement
that (under the same hypotheses) if E has odd Mordell–Weil rank over
K, then it has Mordell–Weil growth relative to K −/K.

In this paper we do two things. First, we give a somewhat different
exposition of Nekovár̆’s theorem, in the hope of making this important
result more accessible and widely known. Namely, we will show how to
derive Nekovár̆’s theorem (Theorem 3.1 below) from the main result of
[10] (which in turn relies crucially on [12]) using a pair of functional
equations satisfied by an “algebraic” p-adic L-function attached to E
over K.

Second, we describe some conditions (Corollary 3.6) under which we
can prove that the pro-p-Selmer rank and/or the Mordell–Weil rank of
E over K are necessarily odd, so that we can apply Theorem 3.1. This
enables us to give families of examples (see Section 5) of Zdp-extensions
with p-Selmer growth.

An important instance of the above setup is when K is an imaginary
quadratic field, k = Q, and σ is complex conjugation. In this case, K +

is the cyclotomic Zp-extension of K and K − is the anti-cyclotomic Zp-
extension of K. The results of Cornut, Vatsal, and Nekovár̆ [2, 17, 11]
show that if E is defined over Q, E has good ordinary reduction at
p, and the pro-p Selmer rank of E over K is odd, then E has Selmer
growth relative to K −/K. (See also the recent preprint [3] of Cornut
and Vatsal generalizing their work to CM-fields.)

There are other prior results that unconditionally imply p-Selmer
growth or positive p-Selmer rank. Greenberg proved in [5] that if E
is an elliptic curve over Q with complex multiplication by K, p > 3
is a prime of good ordinary reduction for E, and ords=1L(E/Q, s) is
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odd, then E has p-Selmer growth relative to K −/K. Skinner and Urban
prove in a recent preprint [16] that given a p-ordinary classical newform
of arbitrary weight at least 2 and of odd analytic rank over an imaginary
quadratic fieldK, and satisfying some mild conditions, its p-Selmer rank
over K is positive.

Most of the work in this article is on the “algebraic,” rather than the
“analytic,” aspect of the arithmetic. However, the motivation for our
work is analytic, in the sense that our main result would follow fairly
directly from a generalized version of the Parity conjecture. Namely, if
F is a finite extension of K in K − and ψ is a character of Gal(F/K),
the Parity conjecture gives the first and last congruences

rank(E(K)) ≡ ords=1L(E/K, s) ≡ ords=1L(E/K,ψ, s)

≡ multiplicity of ψ in E(F )⊗C (mod 2)

and the middle one is a root number calculation. Our result (if we
assume the Shafarevich–Tate conjecture) is the weaker implication that
for every such ψ

rank(E(K)) is odd⇒ the multiplicity of ψ in E(F )⊗C is positive.

See Corollary 3.6 for special cases in which we can replace our “odd
rank” assumption by a root number assumption (i.e., a congruence con-
dition on the conductor of E/Q).

We conclude this introduction with two potential generalizations of
the results of this paper.

First, in general L(E/K, s) will factor into a product of L-functions.
It is possible that ords=1L(E/K, s) is even because an even number
of the factors have odd-order vanishing. In this case, we expect that
rank(E(K)) is even, so the results of this paper would not apply. How-
ever, we expect that the individual factors of L(E/K, s) that vanish will
contribute Zp-power extensions of L/K where E has p-Selmer growth.
This should lead to examples in which the pro-p-Selmer rank of E over
F is at least r[F : K] for every finite extension F of K in L, with
r > 1.

Second, the results of this paper for Selmer groups of elliptic curves
should also apply to Selmer groups of (classical) p-ordinary newforms
of arbitrary even weight k ≥ 2.

We hope to deal with these generalizations in a future paper, by
refining the results of [10] and combining those refined results with the
methods of this paper.
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2. The setting

Fix an elliptic curve E defined over a number field k, and a rational
prime p > 2. For every finite extension F of k, we have the p-power
Selmer group

Selp(E,F ) := ker
(
H1(F,E[p∞]) −→

∏
v

H1(Fv , E)
)
,

where E[p∞] is the Galois module of p-power torsion on E, and the
product is over all places v of F . This Selmer group sits in an exact
sequence

0 −→ E(F )⊗Qp/Zp −→ Selp(E,F ) −→X(E,F )[p∞] −→ 0

where X(E,F )[p∞] is the p-primary part of the Shafarevich–Tate group
of E over F . If F is an arbitrary algebraic extension of Q, we define

Selp(E,F ) := lim−→ Selp(E,F ′),

direct limit (with respect to restriction maps on Galois cohomology)
over finite extensions F ′ of k in F , and the Pontrjagin dual

Sp(E,F ) := Hom(Selp(E,F ),Qp/Zp).

Throughout this paper, if M is a module over an integral domain R,
the R-rank of M will be defined by

rankR(M) := dimFrac(R)M ⊗R Frac(R),

where Frac(R) is the field of fractions of R.
Fix a quadratic extension K of k and let σ denote the non-trivial

automorphism of K/k. Let K denote the maximal Zp-power extension
of K (the compositum of all Zp-extensions of K) and Γ := Gal(K /K).
Then K is Galois over k, and so σ acts on Γ. We let Γ± denote the
subgroup of Γ on which σ acts by ±1, and let K ± be the fixed field
of Γ∓, so that Gal(K ±/K) ∼= Γ±. Then K + is the maximal k-positive
Zp-power extension of K, and K − is the maximal k-negative one, as
discussed in the introduction. Putting d± := rankZp(Γ±), Leopoldt’s
conjecture for K implies that d+ = r2(k) + 1 and d− = r2(K) − r2(k),
where r2 denotes the number of conjugate pairs of complex embeddings
of a number field.

For example, if K is an imaginary quadratic field, then k = Q,
Leopoldt’s conjecture trivially holds for K, d+ = d− = 1 and K + and
K − are the usual cyclotomic and anticyclotomic Zp-extensions of K.

If Kv is the completion of K at a prime v, we denote by E0(Kv) the
subgroup consisting of points of E(Kv) with non-singular reduction,
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so [E(Kv) : E0(Kv)] is the Tamagawa number at v in the Birch and
Swinnerton–Dyer conjecture for E/K.

We will assume the following throughout this paper:

Assumptions 2.1. (i) p > 2 and E has good ordinary reduction
at all primes of K above p,

(ii) E(K) has no p-torsion,
(iii) for every prime v of K of bad reduction, [E(Kv) : E0(Kv)] is prime

to p.

3. Results

The following theorem is essentially Nekovár̆’s Theorem 10.7.17 [12].

Theorem 3.1.
Suppose that Assumptions 2.1 hold. If rankZp(Sp(E,K)) is odd, then

(i) Sp(E,K −) is not a torsion Zp[[Γ−]]-module,
(ii) for every finite extension F of K in K − the Selmer module
Sp(E,F ) has a submodule isomorphic to Zp[Gal(F/K)], and in
particular

rankZp(Sp(E,F )) ≥ [F : K].

In fact, Theorem 10.7.17 of [12] asserts that the Zp[[Γ−]]-rank of
Sp(E,K −) is odd, while Theorem 3.1 only says that the rank is positive.

We will give a proof of Theorem 3.1 in Section 11. Our method is
to show that there is an “algebraic p-adic L-function” satisfying two
different functional equations (see Corollary 10.2), and taken together,
these functional equations imply the theorem.

See Proposition 4.1 below for an explanation of why one would expect
a result like Theorem 3.1 to hold.

Theorem 3.1(ii) says that E has p-Selmer growth relative to K −/K,
using the terminology of the introduction. The following lemma shows
that this statement is often non-trivial.

Lemma 3.2. If K is not totally real, then [K − : K] is infinite.

Proof. We need to show that d− is positive. Class field theory shows
that d− ≥ r2(K)− r2(k) (with equality if Leopoldt’s conjecture holds),
and we have r2(K) ≥ 2r2(k) since each complex place of k splits in K.
Therefore, ifK is not totally real, then r2(K) > r2(k) and d− > 0. q.e.d.

Before providing a corollary of Theorem 3.1, we recall two well-known
conjectures. Let Q∞ denote the (cyclotomic) Zp-extension of Q.
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p-primary Shafarevich–Tate Conjecture. For every finite exten-
sion F of K in K , the p-part X(E,F )[p∞] of the Shafarevich–Tate
group of E over F is finite.

Torsion Conjecture ([8]). The Selmer module Sp(E,KQ∞) is a
torsion Zp[[Gal(KQ∞/K)]]-module.

Remark 3.3. If X(E,F )[p∞] is finite, then there is a canonical iden-
tification Sp(E,F ) ⊗Zp Qp = E(F ) ⊗Z Qp. Thus, if the p-primary
Shafarevich–Tate conjecture holds, then in Theorem 3.1 and the corol-
laries below we can replace the Selmer groups Sp(E,K) and Sp(E,F )
by the Mordell–Weil groups E(K) and E(F ) (and replace rankZp by
rankZ).

Remark 3.4. If the Torsion conjecture holds, then Theorem 3.1 can-
not hold with K − replaced by either K + or K (see Corollary 6.5).

Corollary 3.5.
Suppose that Assumptions 2.1 hold and rankZp(Sp(E,K)) is odd.
(i) If K is not totally real then rankZp(Sp(E,F )) is unbounded as F

runs through finite extensions of K in K .
(ii) More generally, if L is a Zdp-extension of K that is Galois but

not abelian over k, then rankZp(Sp(E,F )) is unbounded as F runs
through finite extensions of K in L.

Proof. Assertion (i) is immediate from Theorem 3.1 and Lemma 3.2.
For (ii), we have that σ acts on Gal(L/K) with (at least one) eigenvalue
−1, so L ∩ K − has infinite degree over K. Thus assertion (ii) follows
directly from Theorem 3.1(ii). q.e.d.

The following corollary applies when the elliptic curve E is de-
fined over Q, and K is Galois over Q. It replaces the condition
“rankZp(Sp(E,K)) is odd” by group-theoretic conditions on Gal(K/Q)
and congruence conditions on the conductor of E. We will deduce this
corollary from Theorem 3.1 in Section 11, by showing that its hypothe-
ses imply that rankZp(Sp(E,K)) is odd.

Corollary 3.6. Suppose that Assumptions 2.1 hold, and that
(a) E is defined over Q and K is a Galois extension of Q whose

discriminant is relatively prime to the conductor NE of E,
(b) Gal(K/Q) is the semidirect product of a (normal) subgroup of odd

order with a non-trivial cyclic 2-group,
(c) either the p-primary Shafarevich–Tate conjecture holds, or every

irreducible Qp-representation of Gal(K/Q) not factoring through
the unique quotient of order 2 has even dimension,
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(d) the Dirichlet character χ corresponding to the (unique) quadratic
field contained in K satisfies χ(−NE) = −1.

Then for every subfield k of K with [K : k] = 2, if K − is the maximal
k-negative Zp-power extension of K,

(i) Sp(E,K −) is not a torsion Zp[[Γ−]]-module,
(ii) for every finite extension F of K in K −, Sp(E,F ) has a submodule

isomorphic to Zp[Gal(F/K)], and in particular,

rankZp(Sp(E,F )) ≥ [F : K].

Remark 3.7. Under hypothesis (b) of Corollary 3.6, all elements of
order 2 are conjugate in Gal(K/Q), and hence the different possible
K −/K are conjugate.

4. Aside on root numbers

Although we will not need it, the following proposition on root num-
bers explains why Theorem 3.1 and Corollary 3.6 are consistent with
standard conjectures.

If ψ is a character of Gal(K̄/K), we denote by W (E/K,ψ) the root
number corresponding to the L-function L(E/K,ψ, s), as defined (for
example) in [4] or [15]. When ψ is the trivial character, we write simply
W (E/K). Note that although the analytic continuation and functional
equation of L(E/K,ψ, s) are known only in very special cases, the root
number is always defined.

Proposition 4.1. Suppose that p > 2, E has good reduction at all
primes above p and all primes ramified in K/Q, and

ψ ∈ Homcont(Gal(K −/K),C×).

(i) The induced representation IndKk ψ is real valued and the root num-
ber W (E/K,ψ) is independent of ψ, and hence equal to W (E/K).

(ii) Suppose that hypotheses (a), (b), and (d) of Corollary 3.6 are sat-
isfied. Then, IndKQψ is real valued and W (E/K,ψ) = −1.

Proposition 4.1 is essentially proved in [9] Section 2.2. We will recall
the proof in Section 12.

Remark 4.2. If F is a finite Galois extension ofK and ψ is a complex
character of Gal(F/K), then a suitably general version of the Birch and
Swinnerton–Dyer conjecture would predict that the multiplicity of ψ in
the representation E(F )⊗C is the order of vanishing of L(E/K,ψ, s) at
s = 1. When IndKQψ is real valued, the conjectured functional equation
relates L(E/K,ψ, s) to L(E/K,ψ, 2 − s) and implies that this order
of vanishing is even if W (E/K,ψ) = 1, and odd if W (E/K,ψ) = −1.
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Thus (using Proposition 4.1) under the hypotheses of Theorem 3.1 and
Corollary 3.6 one expects that for every finite extension F of K in K −
and every character ψ of Gal(F/K), ψ occurs in E(F ) ⊗C. Theorem
3.1 and Corollary 3.6 show that this expectation is correct, at least if
we replace assume that X(E,F )[p∞] is finite for all such F .

Remark 4.3. There is a partial converse to Proposition 4.1. Namely,
suppose that ψ is a character of finite order of Γ := Gal(K /K). Suppose
further that ψ is generic, in the sense that ψ is not the restriction to
K of a character of a Zp-extension of a proper subfield of K. Then the
induced representation IndKQψ is real-valued if and only if there is an
involution σ of K such that ψσ = ψ−1 (see Proposition 2.5 of [9]).

Now suppose in addition that E is defined over Q, the discriminant of
K is relatively prime to the conductor E, and K is Galois over Q. Then
W (E/K,ψ) = −1 if and only if hypotheses (b) and (d) of Corollary 3.6
are satisfied (this is Theorem 2.8 and Proposition 2.9 of [9]).

When K is not Galois over Q the situation is more complicated. We
plan to discuss this, and the further implications for p-Selmer growth
related to odd parity functional equations, in a future paper.

5. Examples

Example 5.1. Let K be an abelian extension of Q containing a
unique quadratic field (i.e., ∆ := Gal(K/Q) is an abelian group with
non-trivial cyclic 2-part). Then ∆ satisfies hypothesis (b) of Corollary
3.6. Let σ be the unique element of order 2 in ∆, and k the fixed
field of σ. We will assume that K is imaginary, for if K is real, then
the cyclotomic Zp-extension is the only Zp-extension of K. Thus σ
is complex conjugation and k is the real subfield of K. Let χ be the
quadratic character of ∆.

Since Leopoldt’s conjecture holds for K, we have K + = KQ∞, so
d+ = 1, and K −/K is a Zd−p -extension with d− = r2(K) = [K : Q]/2.

Let E be an elliptic curve over Q with good ordinary reduction at p,
satisfying Assumptions 2.1, with conductor NE prime to the discrimi-
nant of K, and such that χ(−NE) = −1.

By Corollary 3.6, if the p-primary Shafarevich–Tate conjecture holds,
then we have that the Selmer module Sp(E, K −) is a non-torsion
Zp[[Γ−]]-module and rankZ(E(F )) ≥ [F : K] for all finite extensions F
of K in K −.

Now suppose further that p has even order in (Z/�Z)× for every
odd prime � dividing [K : Q], and either p ≡ 3 (mod 4) or 4 does
not divide [K : Q]. Then, hypothesis (c) of Corollary 3.6 holds even
without the assumption that the p-primary Shafarevich–Tate conjecture
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holds. Thus, in this case, we conclude unconditionally that Sp(E,K −)
is a non-torsion Zp[[Γ−]]-module and rankZ(Sp(E,F )) ≥ [F : K] for all
finite extensions F of K in K −.

If K is an imaginary quadratic field, then K − is the anticyclotomic
Zp-extension of K and the conclusions of Corollary 3.6 were already
known by work of Vatsal [17] and Cornut [2].

Example 5.2. Suppose K is a complex Galois extension of Q with

∆ := Gal(K/Q) ∼= S3.

Note that ∆ satisfies hypotheses (b) and (c) of Corollary 3.6. Let M
denote the (imaginary) quadratic extension of Q in K, and χ the Dirich-
let character corresponding to M/Q. Leopoldt’s conjecture holds for K
(for group-theoretic reasons), so Γ := Gal(K /K) ∼= Z4

p.
Let σ ∈ ∆ be one of the elements of order 2 and kσ its fixed field.

The (non-Galois) cubic field kσ has one pair of complex embeddings, so
d− = r2(K) − r2(kσ) = 2. Hence for each such σ there is a (unique)
Z2
p-extension K −

σ of K, each containing the anticyclotomic Zp-extension
of M .

Let E be an elliptic curve over Q with good ordinary reduction at p,
satisfying Assumptions 2.1, with conductor NE prime to the discrimi-
nant of K, and such that χ(−NE) = −1.

We conclude by Corollary 3.6 that for each of the three elements σ ∈
∆ of order 2, the Selmer module Sp(E,K −

σ ) is not Zp[[Gal(K −
σ /K)]]-

torsion, and for every finite extension F of K in K −
σ we have

rankZp(Sp(E,F )) ≥ [F : K].

(Note that the three Z2
p-extensions K −

σ are isomorphic over K, and
hence the three Selmer modules Sp(E,K −

σ ) are isomorphic as well.)

Example 5.3. Suppose K ′ is a complex Galois extension of Q with

∆ := Gal(K ′/Q) ∼= S4.

Note that ∆ does not satisfy hypothesis (b) of Corollary 3.6. Let H
be a subgroup of order 2 in ∆, generated by a 2-cycle (so, H 	⊂ A4)
and let K be the fixed field of H in K ′. Let σ ∈ ∆ −H be an element
in the normalizer of H, so σ is an automorphism of K of order 2, and
let k be the fixed field of σ. One can check that K has 5 pairs of
complex embeddings if the complex conjugations in ∆ are 2-cycles, and
6 otherwise; k has 2 pairs of complex embeddings in either case.

Assume that Leopoldt’s conjecture holds for K. The discussion above
shows that Γ := Gal(K /K) ∼= Znp where n is 6 or 7, and Γ− :=
Gal(K −/K) has Zp-rank 3 or 4.
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Let E be an elliptic curve over Q, with good ordinary reduction at
p, satisfying Assumptions 2.1, with conductor NE prime to the discrim-
inant of K. It follows from Theorem 2.8 of [9] (or see the proof of
Proposition 4.1) that the root number of L(E/K, s) is χ(−NE), where
χ is the quadratic Dirichlet character corresponding to the fixed field of
A4 in K.

Assume now χ(−NE) = −1. Then conjecturally rankZp(Sp(E, K)) is
odd, and if so, we can use Theorem 3.1 to conclude that the Selmer mod-
ule Sp(E,K −) is not Zp[[Γ−]]-torsion, and that for every finite extension
F of K in K −, we have rankZp(Sp(E,F )) ≥ [F : K].

Unfortunately, unlike the situation of Corollary 3.6, we have no gen-
eral way to show that rankZp(Sp(E,K)) is odd. We do know (using
Nekovár̆’s parity theorem [11]) that rankZp(Sp(E,M)) is odd, where
M is the (quadratic) fixed field of A4 in K, but M 	⊂ K so there is
no apparent way to relate the parity of rankZp(Sp(E,K)) to that of
rankZp(Sp(E,M)).

6. The control theorem

Define the Iwasawa algebra

Λ := Zp[[Γ]].

If K ⊂ F ⊂ K , we let ΛF := Zp[[Gal(F/K)]] denote the corresponding
quotient of Λ, and IF ⊂ Λ the corresponding augmentation ideal:

0 −→ IF −→ Λ −→ ΛF −→ 0.

Thus IF is generated by {γ − 1 : γ ∈ Gal(K /F )}.
Suppose that either
(i) F is a Zdp-extension of K in K and R := ΛF , or
(ii) F is an arbitrary extension of K in K and R := ΛF ⊗Qp.

In case (i) R is an integrally closed noetherian domain, and in case (ii) R
is a direct sum of integrally closed noetherian domains. If M is a finitely
generated torsion R-module, we let charR(M) denote the characteristic
ideal of M , called the divisor of M in [1] Chapter VII, Section 4.5. (In
case (ii), we make this definition component-by-component.) If (some
component of) M is not torsion, we set (that component of) charR(M)
equal to zero. Then M has a submodule isomorphic to R if and only if
charR(M) = 0.

The following “control theorem” is due to Greenberg ([6] Theorem 2).

Theorem 6.1. Suppose that K ⊂ F ⊂ L ⊂ K , and F/K is finite.
Then the natural map

Sp(E,L) ⊗ΛL
ΛF −→ Sp(E,F )
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(induced by the restriction map Selp(E,F ) → Selp(E,L)Gal(L/F )) has
finite kernel and cokernel. In particular

rankZp(Sp(E,F )) = rankZp(Sp(E,K )⊗Λ ΛF ).

Corollary 6.2. The Λ-module Sp(E,K ) is finitely generated.

Proof. Since Sp(E,K) is finitely generated over Zp, this is immediate
from Theorem 6.1 and Nakayama’s Lemma. q.e.d.

Lemma 6.3. Suppose K ⊂ F ⊂ L ⊂ K , L/K is a Zp-power exten-
sion, and M is a finitely generated ΛL-module. Let MF := M ⊗ΛL

ΛF .
(i) MF is a finitely generated ΛF -module.
(ii) charΛF⊗Qp(MF ⊗Qp) ⊂ charΛL

(M)(ΛF ⊗Qp).
(iii) If charΛL

(M) ⊂ IFΛL, then MF has a submodule isomorphic to
ΛF .

Proof. The first assertion is clear.
For (ii), since charΛL⊗Qp(M ⊗Qp) = charΛL

(M)⊗Qp, we can reduce
by induction to the case that L/F is a Zp-extension. In that case, (ii)
follows from Lemmas 2 and 4 of Section I.1 of [13].

If charΛL
(M) ⊂ IFΛL, then by (ii), charΛF⊗Qp(MF ⊗Qp) = 0. Hence

MF⊗Qp has a submodule isomorphic to ΛF⊗Qp, and (iii) follows. q.e.d.

Proposition 6.4. Suppose that K ⊂ F ⊂ L ⊂ K , L/K is a Zp-
power extension, and charΛL

(Sp(E,L)) ⊂ IFΛL.
(i) If F/K is finite, then Sp(E,F ) has a submodule isomorphic to ΛF .
(ii) If F/K is a Zp-power extension, then Sp(E,F ) is not a torsion

ΛF -module.

Proof. Suppose first that F/K is finite. By Lemma 6.3(iii) applied
with M := Sp(E,L), the ΛF -module Sp(E,L)⊗ΛL

ΛF has a submodule
isomorphic to ΛF . Now (i) follows from Theorem 6.1.

Now suppose F is a Zp-power extension of K and charΛ(Sp(E,L)) ⊂
IFΛL. If F ′ is a finite extension of K in F , then IF ⊂ IF ′ so assertion
(i) shows that Sp(E,F ′) has a submodule isomorphic to ΛF ′ . Thus
by Theorem 6.1, Sp(E,F ) ⊗ ΛF ′ has a submodule isomorphic to ΛF ′ .
Since this holds for every finite extension F ′ of K in F , it follows that
Sp(E,F ) cannot be a torsion ΛF -module. q.e.d.

Corollary 6.5. If the Torsion conjecture holds, then Sp(E,K ) is a
torsion Λ-module and Sp(E,K +) is a torsion ΛK +-module.
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Proof. If Sp(E,K ) is not a torsion Λ-module, then charΛ(Sp(E,K )) =
0, and so Proposition 6.4(ii) (with L = K and F = KQ∞) would con-
tradict the Torsion conjecture.

The proof for K + is the same. q.e.d.

7. Involutions and functional equations

Suppose that τ is a Zp-linear involution of Γ. Then, τ induces an
involution of Λ (which we will also denote simply by τ , or by λ �→ λτ ). If
M is a Λ-module, we let M τ be the Λ-module with the same underlying
abelian group as M , but with Λ-module structure obtained from that
of M by composition with τ .

We will be especially interested in the following two involutions.

Example 7.1. Let ι denote the involution γ �→ γ−1 of Γ, and also
the induced involution of Λ.

Example 7.2. Let σ be the non-trivial automorphism of K/k as in
Section 2. The natural action of σ induces an involution of Γ, and hence
of Λ, which we will also denote simply by σ.

Lemma 7.3. Suppose that T is a (commutative) group of involutions
of Γ. Then the natural inclusion {±1} ↪→ Λ× induces an isomorphism

Hom(T, {±1}) ∼−→ H1(T,Λ×).

Proof. We have a direct sum decomposition Λ× ∼= F×
p ⊕ Λ′ where Λ′

is the kernel of the reduction map Λ× → F×
p . Since Λ′ is a pro-p group

and p > 2, H1(T,Λ′) = 0 and so

H1(T,Λ×) = H1(T,F×
p ) = Hom(T,F×

p ) = Hom(T, {±1}).
q.e.d.

Proposition 7.4. Suppose that T is a (commutative) group of invo-
lutions of Γ, and A ⊂ Λ is a principal ideal that is stable under every
involution in T . Then there is a homomorphism ε : T → {±1} and a
generator L of A such that

Lτ = ε(τ)L for every τ ∈ T .

Further, for each τ ∈ T , ε(τ) is uniquely determined by τ and A (i.e.,
it does not depend on T or L) and is characterized by the fact that
every generator α of A satisfies ατ/α ≡ ε(τ) (mod I) where I is the
augmentation ideal IK of Λ.
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Proof. Let α be a generator of A. Since A is stable under involutions
in T , the map c(τ) := ατ/α is a 1-cocycle from T to Λ×. By Lemma 7.3,
there is a homomorphism ε : T → {±1} that is equivalent in H1(T,Λ×)
to c. In other words, there is a u ∈ Λ× such that (uτ/u)c(τ) = ε(τ) for
every τ ∈ T . Put L := uα. Then L is a generator of A and Lτ = ε(τ)L
for every τ ∈ T .

For every τ ∈ T (with notation as above), we have ατ/α = ε(τ)u/uτ .
Since τ acts trivially on Λ/I, we have uτ ≡ u (mod I) for every u, and
so ατ/α ≡ ε(τ) (mod I). q.e.d.

If τ is an involution of Γ, we let Γ±
τ be the submodule of Γ on which τ

acts via ±1, and K ±
τ the fixed field of Γ∓

τ . (If σ is the non-trivial auto-
morphism of a quadratic extension K/k, then K ±

σ is what we previously
denoted simply K ±, the maximal k-negative Zp-power extension of K.)

Proposition 7.5. Suppose that τ is an involution of Γ, and L ∈ Λ
satisfies Lτ = −L. Then L lies in the augmentation ideal IK +

τ
.

Proof. In the exact sequence

0 −→ IK +
τ
−→ Λ −→ ΛK +

τ
−→ 0,

IK +
τ

is stable under τ , and τ induces the identity map on ΛK +
τ
. Since

Lτ = −L, the image of L in ΛK +
τ

must be zero, and the proposition
follows. q.e.d.

8. Nekovár̆’s Selmer complex

Definition 8.1. By a complex of Λ-modules we mean an infinite
co-complex, i.e., a sequence of Λ-modules and Λ-homomorphisms

C• : · · · −→ Cn −→ Cn+1 −→ · · · ,
with (co-)boundary operators raising degrees by 1 and such that the
composition of any two successive coboundaries vanishes. We construct
other complexes from C• as follows: the shifted complex, for k ∈ Z

C•[k] : · · · −→ Cn+k −→ (C ′)n+1+k −→ · · · ,
the Λ-dual complex

HomΛ(C•,Λ) : · · · −→ HomΛ(C−n,Λ) −→ HomΛ(C−n−1,Λ) −→ · · · ,
and, if τ is an involution of Λ

(C•)τ : · · · −→ (Cn)τ −→ (Cn+1)τ −→ · · · .
Let C denote the category of complexes of Λ-modules and let D be

the derived category.
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Suppose now that Sp(E,K ) is a torsion Λ-module. Let C•
Nek be

Nekovár̆’s “Selmer complex”, the complex in D that is denoted by
R̃Γf,Iw(K /K, Tp(E)) in [12] Section 9.7.1, where Tp(E) := lim←−E[pn]
is the p-adic Tate module of E. Nekovár̆ shows that C•

Nek has the fol-
lowing properties.

Theorem 8.2.
(i) H2(C•

Nek) = Sp(E,K ),
(ii) C•

Nek has a canonical skew-Hermitian (with respect to the involu-
tion ι of Example 7.1) self-duality in the derived category D

C•
Nek
∼= RHomΛ(C•

Nek,Λ)ι[−3],

(iii) there is an isomorphism of complexes ϕ : C•
Nek

∼−→ (C•
Nek)

σ in D
(where σ is the involution of Example 7.2) such that

ϕσ ◦ ϕ : C•
Nek → C•

Nek

is the identity in D and the following diagram of isomorphisms in
D commutes

C•
Nek

∼ ��

ϕ

��

RHomΛ(C•
Nek,Λ)ι[−3]

(C•
Nek)

σ ∼ �� RHomΛ((C•
Nek)

σ ,Λ)ι[−3]

ϕ∗
��

where ϕ∗ is the morphism of complexes (in D) induced by ϕ and
the horizontal isomorphisms are the canonical ones from (ii).

Proof. For (i), see [12] Section 9.6.7 and Section 9.7, and for (ii),
see [12] Proposition 9.7.3. Assertion (iii) follows from the functoriality
of C•

Nek and its self-duality (ii); see [12] Proposition 6.4.2 and Corol-
lary 6.4.3. q.e.d.

We next recall some notation from [10].

Definition 8.3. A basic skew-Hermitian Λ-module is a free Λ-module
Φ of finite rank with a non-degenerate skew-Hermitian pairing

h : Φ⊗Λ Φι −→ m

where m is the maximal ideal of Λ and by skew-Hermitian we mean that
h(b⊗ a) = −h(a⊗ b)ι.

Suppose Φ is a basic skew-Hermitian module. We define a complex
Φ• concentrated in degrees 1 and 2 by setting Φ1 := Φ and Φ2 :=
HomΛ(Φι,Λ), with coboundary map induced by h. Let

N• := Hom(Φ•,Λ)ι[−3].
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We have canonical identifications

N1 = Hom(Hom(Φι,Λ),Λ)ι = Φ = Φ1,

N2 = Hom(Φ,Λ)ι = Hom(Φι,Λ) = Φ2

with coboundary −h : N1 → N2 (because h is skew-Hermitian). We
fix an isomorphism j : Φ• → Hom(Φ•,Λ)ι[−3] by setting j1 := −1 and
j2 := +1.

Under our Assumptions 2.1, we have the following result from [10]
(Theorem 7.5).

Theorem 8.4. Suppose that Sp(E,K ) is a torsion Λ-module. Then
there is a basic skew-Hermitian Λ-module Φ such that

(i) there is an isomorphism ψ : Φ• ∼−→ C•
Nek in the derived category D

where Φ• is the complex of Definition 8.3,
(ii) there is a commutative diagram of isomorphisms in D

Φ• ∼ ��

ψ

��

HomΛ(Φ•,Λ)ι[−3]

C•
Nek

∼ �� RHomΛ(C•
Nek,Λ)ι[−3]

ψ∗
��

where ψ∗ is the isomorphism induced by ψ, and the horizontal
isomorphisms are from Definition 8.3 and Theorem 8.2(ii), respec-
tively.

Corollary 8.5. If Φ is as in Theorem 8.4, then there is a short exact
sequence of Λ-modules

0 −→ Φ −→ Hom(Φι,Λ) −→ Sp(E,K ) −→ 0.

Proof. By Theorems 8.4(i) and 8.2(i), H2(Φ•)=H2(C•
Nek)=Sp(E,K )

and the corollary follows. q.e.d.

9. The inversion involution

Let ι be the inversion involution on Γ, i.e., ι(γ) = γ−1, as in Example
7.1. Suppose that Sp(E,K ) is a torsion Λ-module, so we can apply the
results of Section 8.

Proposition 9.1. With Φ as in Theorem 8.4, we have

rankΛ(Φ) ≡ rankZp(Sp(E,K)) (mod 2).
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Proof. Let I := IK denote the augmentation ideal of Λ, so Λ/I =
ΛK ∼= Zp. Tensoring the exact sequence of Corollary 8.5 with Λ/I gives

Φ/IΦ h̄−→ Hom(Φι/IΦι,Zp) −→ Sp(E,K )⊗Λ Zp −→ 0.

Since ι acts trivially on Λ/I, the map h̄ is represented by a skew sym-
metric matrix with entries in Zp. Such a matrix has even rank (that
is, the non-degeneracy rank of the matrix, which is the Zp-rank of the
image), and it follows that

rankZp(Sp(E,K )⊗Λ Zp) ≡ rankZp(Φ/IΦ) = rankΛ(Φ) (mod 2).

On the other hand, Theorem 6.1 shows that

rankZp(Sp(E,K)) = rankZp(Sp(E,K )⊗Λ Zp),

and the proposition follows. q.e.d.

Corollary 9.2. Suppose that Sp(E,K ) is a torsion Λ-module. Let H
be the matrix giving the skew-Hermitian pairing of Theorem 8.4 with re-
spect to some Λ-basis of Φ, and L := det(H) ∈ Λ. Then L is a generator
of char(Sp(E,K )) and Lι = (−1)rL, where r := rankZp(Sp(E,K)).

Proof. By Corollary 8.5, det(H) is a generator of char(Sp(E,K )). On
the other hand, H is a skew-Hermitian matrix (i.e., the transpose of H
is −Hι), so

det(H)ι = det(Hι) = det(−H) = (−1)rankΛ(Φ) det(H) = (−1)r det(H)

the final equality by Proposition 9.1. q.e.d.

10. The involution σ

Let σ be the non-trivial automorphism of K/k as in Section 2, and let
σ also denote the corresponding involutions of Γ and Λ as in Example
7.2. The following theorem is one of the keys to the proof of Theorem
3.1. Let I := IK ⊂ Λ denote the augmentation ideal.

Theorem 10.1. Suppose L is a generator of char(Sp(E,K )). Then
there is a unit u ∈ Λ×, u ≡ 1 (mod I), such that Lσ = uL.

Proof. We may suppose Sp(E,K ) is a torsion Λ-module, or else we
have char(Sp(E,K )) = 0 and there is nothing to prove. Let Φ• be the
complex of Definition 8.3.
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Combining Theorems 8.2(iii) and 8.4, we get an isomorphism η :
Φ• → (Φ•)σ in the derived category D and a commutative diagram

(10.1)

Φ• ∼ ��

η

��

HomΛ(Φ•,Λ)ι[−3]

(Φ•)σ ∼ ��

ησ

��

HomΛ((Φ•)σ,Λ)ι[−3].

η∗
��

By Corollary 5.6 of [10], there is an isomorphism of complexes (in the
category C) f : Φ• → (Φ•)σ that gives rise to η. Let Φ∗ := HomΛ(Φι,Λ),
the degree-2 module of Φ•. Then f is given by isomorphisms of Λ-
modules

f1 : Φ ∼−→ Φσ, f2 : Φ∗ ∼−→ (Φ∗)σ.
Let fσ : (Φ•)σ → Φ• be the morphism of complexes given by

(f1)σ : Φσ → (Φσ)σ = Φ, (f2)σ : (Φ∗)σ → ((Φ∗)σ)σ = Φ∗.

Applying the functor HomΛ( · ,Λ)ι to f1 and f2 gives isomorphisms

(f2)∗ : Φσ → Φ, (f1)∗ : (Φ∗)σ → Φ∗.

These Λ-isomorphisms give a morphism of complexes f∗ : (Φ•)σ → Φ•,
and the commutativity of (10.1) says f∗ = fσ as morphisms Φ• → Φ•
in the derived category D. By Corollary 5.6 of [10], we conclude that f∗
is homotopic to fσ. By our definition of basic skew-Hermitian module
(Definition 8.3), the coboundary map Φ→ Φ∗ of Φ• is zero modulo the
maximal ideal m of Λ. Therefore every homotopy must be congruent to
the identity modulo m, and in particular

(10.2) (f2)∗ = (f1)σ on Φ⊗ (Λ/m).

Consider the diagram

(10.3)

Φ
h ��

f1

��

Φ∗

f2

��
Φσ hσ

�� (Φ∗)σ

where h is the coboundary map in the complex Φ•. Fix a Λ-basis of
Φ, use the dual basis for Φ∗, and the corresponding bases for Φσ and
(Φ∗)σ . With these bases, if we let d := rankΛ(Φ), (10.3) becomes

Λd
H ��

F 1

��

Λd

F 2

��
Λd

Hσ
�� Λd
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where H is a d× d matrix with entries in Λ, and F 1, F 2 ∈ GLd(Λ). By
(10.2), we see that (F 1)ισ is congruent modulo m to the transpose of F 2.
As in the proof of Corollary 9.2, it follows from Corollary 8.5 that det(H)
is a generator of char(Sp(E,K )), and we see that det(H)σ = udet(H),
where

u := det(F 2)/det(F 1) ≡ det(F 1)ισ/det(F1) ≡ 1 (mod m).

Now the theorem follows from Proposition 7.4. q.e.d.

Corollary 10.2. Suppose that Sp(E,K ) is a torsion Λ-module. Then
there is a generator L of char(Sp(E,K )) such that

Lι = (−1)rL, Lσ = L
where r := rankZp(Sp(E,K)).

Proof. Let T be the group generated by the (commuting) involu-
tions ι and σ of Γ. By Corollary 9.2 and Theorem 10.1, the ideal
char(Sp(E,K )) is stable under every element of T . Now the corollary
follows from Proposition 7.4, Corollary 9.2, and Theorem 10.1. q.e.d.

11. Proofs of Theorem 3.1 and Corollary 3.6

Proof of Theorem 3.1. If Sp(E,K ) is not a torsion Λ-module, then The-
orem 3.1 holds by Proposition 6.4 (with L = K and F ⊂ K −). So we
may assume that Sp(E,K ) is a torsion Λ-module.

Let L be a generator of charΛ(Sp(E,K )) satisfying Corollary 10.2.
Since we assume that rankZp(Sp(E,K)) is odd, we have Lισ = −L.
Note that (in the notation of Section 7) Γ+

ισ = Γ− and K +
ισ = K −. By

Proposition 7.5, we have L ∈ IK +
ισ

= IK −, so Theorem 3.1 follows from
Proposition 6.4 (with L = K and F ⊂ K −). q.e.d.

Corollary 3.6 will follow immediately from Theorem 3.1 once we show
that (under the hypotheses of Corollary 3.6) rankZp(Sp(E,K)) is odd.
We will deduce this from Nekovár̆’s parity theorem [11] for Selmer
groups over Q.

Lemma 11.1. Suppose G is a finite group of odd order. If V is a
non-trivial irreducible representation of R[G], then dimR(V ) is even.

Proof. We will prove this by induction on the order of G. If G is
cyclic, then the lemma is clear. If not, then by the Feit–Thompson
theorem, G has a proper normal subgroup H. If H acts trivially on V ,
then we are done by induction (applied to G/H), so we may assume
that H acts non-trivially on V .
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Decompose V = ⊕iVi where each Vi is an irreducible representation
of R[H]. If some Vj is the trivial representation then (since H is normal)
H acts trivially on the G-span of Vj. But the G-span of Vj is non-zero
and G-stable, hence equal to V . This contradicts our assumption that
H acts non-trivially on V .

Thus, by induction each dimR(Vi) is even, and so dimR(V ) is even.
q.e.d.

Lemma 11.2. Suppose ∆ is the semidirect product of a (normal) sub-
group of odd order with a non-trivial cyclic 2-group. If ρ is an irreducible
representation of R[∆], not equal to either the trivial representation or
the unique quadratic one-dimensional character, then dim(ρ) is even.

Proof. Let H denote the (normal) odd-order subgroup of ∆ with
cyclic 2-power quotient. If ρ is trivial on H, then the proposition is clear.

Decompose ρ|H = ⊕iρi into irreducible representations of R[H]. Ar-
guing exactly as in the proof of Lemma 11.1, we conclude that each ρi
is non-trivial, and then by Lemma 11.1, each dim(ρi) is even. q.e.d.

Proposition 11.3. Suppose that K is Galois over Q and Gal(K/Q)
satisfies hypothesis (b) of Corollary 3.6. Let M denote the (unique)
quadratic field contained in K.

(i) rankZ(E(K)) ≡ rankZ(E(M)) (mod 2).
(ii) If in addition Gal(K/Q) satisfies hypothesis (c) of Corollary 3.6,

then rankZp(Sp(E,K)) ≡ rankZp(Sp(E,M)) (mod 2).

Proof. Let V := (E(K)⊗R)/(E(M)⊗R) and ∆ := Gal(K/Q). Then

rankZ(E(K)) − rankZ(E(M)) = dimR(V ).

The R[∆]-module V contains no copies of either of the two one-dimen-
sional real representations of ∆, so Lemma 11.2 shows that dimR(V ) is
even. This proves (i).

If the p-primary Tate–Shafarevich conjecture holds, then (ii) follows
immediately from (i). If every irreducible Qp-representation of ∆ not
factoring through Gal(M/Q) has even dimension, then exactly as above
the Qp-dimension of (Sp(E,K) ⊗Qp)/(Sp(E,M) ⊗Qp) is even. q.e.d.

Theorem 11.4. Suppose that hypotheses (a), (b), (c), and (d) of
Corollary 3.6 are satisfied. Then rankZp(Sp(E,K)) is odd.
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Proof. Let M denote the quadratic extension of Q inside K, and
let E′ denote the quadratic twist of E by M . Then L(E/M, s) =
L(E/Q, s)L(E′/Q, s) and Sp(E,M) ∼= Sp(E,Q) ⊕ Sp(E′,Q). Nekovár̆
[11] proved that

rankZp(Sp(E,Q)) ≡ ords=1L(E/Q, s) (mod 2)

and similarly for E′. We deduce that

rankZp(Sp(E,M)) ≡ ords=1L(E/M, s) (mod 2).

By (for example) Proposition 4.1(ii) applied with K replaced by M ,
the root number W (E/M) = −1, so ords=1L(E/M, s) is odd and we
conclude that rankZp(Sp(E,M)) is odd.

It now follows from Proposition 11.3(ii) that rankZpSp(E,K) is odd.
q.e.d.

Proof of Corollary 3.6. Corollary 3.6 follows immediately from Theo-
rem 3.1, using Theorem 11.4. q.e.d.

12. Proof of Proposition 4.1

Proposition 4.1 is essentially proved in [9] Section 2.2. For complete-
ness, we sketch the proof here.

Proof of Proposition 4.1. Suppose ψ ∈ Homcont (Gal (K −/K), C×).
Since σ acts as −1 on Gal(K −/K), we have ψσ = ψ−1 = ψ̄. Therefore
IndKk ψ = IndKk ψ̄, so IndKk ψ is real valued in part (i), and similarly for
IndKQψ in part (ii).

In Proposition 10 of [15], Rohrlich gives a formula for the root number
W (E/K,ψ) = W (E/k, IndKk ψ) that depends only on E and det(IndKk ψ),
and does not otherwise depend on ψ. To complete the proof of (i), we
need only show that det(IndKk ψ) does not depend on ψ.

Let p be a prime of Q̄ above p. Since ψ has p-power order, ψ ≡ 1
(mod p) where 1 is the trivial character, and so

det(IndKk ψ) ≡ det(IndKk 1) (mod p).

Since p is odd and both sides of this congruence are characters taking
only the values ±1, it follows that the congruence must be an equality.
This proves (i).

For (ii), we use Rohrlich’s Proposition 10 [15] again to conclude that

W (E/K,ψ) = W (E/Q, IndKQψ) = χ(−NE)
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where χ := det(IndKQψ). Exactly as above, we have det(IndKQψ) =
det(IndKQ1), and by Proposition 2.9 of [9], hypothesis (b) of Corol-
lary 3.6 ensures that det(IndKQ1) is the unique quadratic character of
Gal(K/Q). Now the hypothesis (d) of Corollary 3.6 completes the proof
of (ii). q.e.d.
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